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ABSTRACT

A number of finite difference schemes are available to study pressure fluctuation
effects in unsteady pipe flows. This paper presents a comparison of the predictions
made by three such schemes of unsteady flow effects in a number of reciprocating
compressor pipe-work systems. The finite difference schemes considered were; -
a first order scheme known as the method of characteristics, two second order
schemes which were the Leapfrog method and MacCormack's method. A
reciprocating compressor simulation computer program was coupled with
equations describing the cylinder thermod:mamic processes with the pipe flow
equations for steady non-homentropic flow. The comparison presented takes into
account both the efficiency of the methods under consideration and their
agreement in the prediction of the compressor behaviour. The MacCormack's
method was modified to handle processes at pipe boundaries and within gas
volumes while the Leapfrog method had to be coupled with the method of
characteristics at pipe boundaries. The method of characteristics was also used
independently to handle both internal meshes and pipe boundaries. The Leapfrog
method was found to be more favourable in terms of computer time followed by
the MacCormack's method and lastly the method of characteristics. In terms of
accuracy the two second order schemes were found to be superior to the method
of characteristics which is a first order accuracy scheme.

INTRODUCTION.

In numerical simulations of the thermodynamic and fluid dynamic processes
which occur in compressor systems, a significant proportion of the computational
procedures is devotcd to calculations relating to unsteady gas flow in the pipes
connecting compressor elements. Maclaren et all'? reported the application of the
method of characteristics, the Lax-Wendroff finite difference method and the
Leapfrog method in studies of reciprocating compressor systems. In both the Lax-
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Wendroff and leapfrog cases, the method of characteristics was used at the
boundaries. A number of improved numerical methods by Sod® and Chu'* are
now available which permit the use of coarser mesh sizes thereby substantially
reducing the computer time required. The boundary considerations by Chu and
Sereny” have allowed the application of methods other than the method of
characteristics at the boundaries. '

Studies of compressor systems reported in this paper employed an explicit non-
centered finite difference scheme at both the internal and the boundary mesh
points as an alternative procedure to the previously used'® characteristics finite
difference combination, i.e. finite difference method in internal mesh points and
the method of characteristics at the boundaries.

NON-CENTERED FINITE DIFFERENCE APPROACH

The hyperbolic equations governing one dimensional unsteady nonhomentropic
tflow may be written in the conservation-law form or the normal form as follows;

ﬂf .\ oG (U)
ot Ox

where the elements of U are the dependent variables and G(U) is a vector function
of U. The non-conservative terms relating to heat transfer, friction and area
change are included in B(U). The corresponding set of linearized equations is

given as;
ou ou
s o e = 0
3t Ox )

where C is the Jacobian of G(U).

= B(U) (1)

One of the simplest forms of explicit second order non-centered finite difference
schemes which can be applied to the set represented by equation (1), was
developed by MacCormack!”. Its one-dimensional version is reported by
Roache™ and a form suitable for the non-homogeneous set of equations (1) is
discussed by Dwyer et al’®’.

The scheme itself is executed in two steps;-

First step: The predictor step

_——-ﬂ—=__'———_____,__“—_—_ —— e ——————
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up™ = U) - UG, - 6w - A B, (3)

Second step: The corxrector step
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Figure 1 shows the computational mesh on an x-t plane and indicates the points
involved in the different calculations,
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Figure 1 Grid Notation

The first step is regarded as a predictor step while the second step is a corrector

: . 1 ;
step. The method first obtains an approximate value U : at each mesh point

using a forward difference scheme to approximate the spatial detrivatives. The
approximate solution is then used in the second step to obtain the new corrected
value U,™" using backward differences. Having done this in the first time step, in
the next time step the first equation is solved using a backward difference scheme
whilst the second equation is soived using forward differences which, means that
for the predictor step, the determination of the temporary values of dependent
variables at the time level (n+1) at point 4 requires information from point 2 and
3 at time level n. For the corrector step, the true value of the dependent variables
for point 4 is calculated from values of point 2 and 5. When advancing in time
step the new dependent variables are then determined by applying the non-
centered finite difference scheme in the opposite direction. This treatment is
necessary for the increased stability of the method. The alternating difference
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approach is then used in subsequent time steps.

When the MacCormack procedure is applied to the linearized set of hyperbolic
equation (2), it may be reduced to the single step second order Lax-Wendroff
scheme!');

0, <0 _2( z)(uﬁl Uy ) Z(Cg) (Utl"ZU;JrU;I) ®)

In this instance its properties, i.e. stability attenuation and phase shift can be
considered the same as those evaluated for the Lax-Wendroff method by
Maclaren et al''l.

The boundary scheme corresponding tc the MacCormack method is provided
through two steps;

First step:
T n n B A n n n n
UL 303Uy, Uy RGNy -3G (D + GOy ) ABD~ (6)

Second step:

U;*‘__(U'”‘ U) 2 (G(U)"*‘ G(U);”) —At.lfr(lU)"”l (7)

The linearized case gives the foIlowmg form;

At At

uy-ui-c po; 4UN1+UM)+5(CE) pi-2uiuis) @

McGuire and Morris"” showed that the same effect could be obtained by
quadratic extrapolation at boundary points in the time level n. Furthermore, a
similar analysis can be performed, and the same conclusions deduced for the time
level (u+1). It allows the non-centred finite difference scheme to be independently
applied not only to all finite difference methods of the Lax-Wendroff type but
even to the wider class of suitable explicit internal finite difference mesh methods.
If a noncentred finite difference method is applied at boundary points, the
boundary values are purely internal field quantities and have to be corrected in the
usual manner.

A Von Neumann"! stahility analysis for the boundary scheme applied to the
linearised set of equations (2) with the additional restriction C = constant gives
an amplification factor £ of modulus |£].
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The numerical solution of equation (9) when plotted against the time/space ratio
CAtAx and the Fourier component wave number A/Ax produces Figure 2. The
Von Neumann stability criterion requires that |} < 1.0 if both Ax and At

approach zero, and it is certainly satisfied if CAt/Ax < 1.0.

The Hirt!"*! "heuristic" stability analysis adapted to the MacCormack procedure
by Tyler'”], shows some important features of the noncentred boundary schemes
as depicted by equation (8). The scheme is consistent with the original set of
differential equations, is of second order accuracy and the necessary stability
condition is CAt/Ax < 1.0. All stability criteria applied agree with the Courant-
Friedrichs Lewy criterion which ensures that the numerical propagation rate does
not exceed the physical rate.
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Fig. 2 Amplification Factor vs Mesh Proportion Ratio
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NUMERICAL RESULTS

The previous version of the compressor simulation program by Pastrana'®, which
employed two finite difference methods coupled with the method of
characteristics at the boundary points, was adapted to incorporate the
MacCormack finite difference procedure at the internal mesh points and the non-
centred finite difference scheme as the replacement of the method of
characteristics at the boundaries. The novel boundary approach seems to have
some advantages over the method of characteristics - finite difference
combination.

- the values of the variables for the initial iterations obtained at the time
level n+1 are more accurate than guesses based on the previous time step
values the practice used.

- the calculation process is straight forward and avoids any interpolation.

- the overall calculation procedure including the boundary points is
second order accurate.

Results presented in Figures 3, 4 and 5 correspond to the fourth simulated cycle.
The reason is that it is normally assumed that the dynamic behaviour of a
reciprocating compressor could be established satisfactorily by the fourth cycle.
Operating conditions for the cases considered are shown in Table 1.

Table 1: Operating Conditions

SPEED| P, |T.n| Pu/Punl Tg/T, | INLET PIPE | DISCHARGE
(r.p.m) | (bar) [(°C) m PIPE

LENG| DIA |[LENG| DIA
TH {fmm)!| TH (mm)

A4Ax \Ai1iixiy Aax \ALxisiy

(m) (m)

552 1.02 }530 7.8 1.5 | 575 | 540} 40 | 54.0
612 1.02 | 530 7.8 1.5 | 575 | 54.0 ] 40 | 54.0
645 1.02 |530 7.8 1.5 | 5.75 | 54.0 | 4.0 | 54.0

Three numerical techniques of solution were used in the simulation program
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Fig. 3 Analytical compressor records (speed 552 rev/min)
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Fig. 4 Analytical compressor records (speed 612 rev/min)
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Fig. 5 Analytical compressor records (speed 645 rev/min)
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for solving pipe flow equations (Leapfrog, MacCormack and Characteristics). The
comparison of all the three schemes is presented in Figures 3, 4 and 5, in terms
of the agreement of the methods in the prediction of the compressor behaviour.
As 1t can be seen from the figures, the results obtained for three different
compressor speeds, by the various numerical schemes generally show a
satisfactory agreement with each other.

Table 2: Computer Time Comparison

P MACCORMACK [CHARACTERIST
I.p.m.) ICS
MESHES | CPU | MESHES | CPU | MESHES }{ CPU

—TIME - TIME - TIME
Suct Disch (eee) Suct Disch. (sed) Suct Disch (sec) "

ion 101 ion | .
24 | 219

552 118 | 14 | 88 |18 14 | 102 |30

612 |18 14 | 80 [18 ]| 14 | 94 |30 | 24 | 210
L 645 1181 14 | 74 1181 14 J} 85 130 ; |
Table 2 shows that there is an appreciable central processor time reduction when
the second order accuracy method is used. This can be explained by the fact that:-

® With these schemes, coarser meshes can be used resulting in
fewer mesh points having to be calculated hence less
computation. i

L Coarser mesh sizes meaning that longer time steps could be
used while still satisfying the stability criteria and hence less
computation.

® Because differences in the independent variables are taken
mnstead of computation along characteristic directions the need
for interpolations and extrapolations is avoided and less
calculation is involved in higher order techniques.

From Table 2, it is clearly seen that to produce results which were as close as
possible to those produced by the Leapfrog and MacCormack schemes, the
computing times needed by the program when using the method of characteristics
were generally over twice those required by the two second order of accuracy
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Fig. 6 Analytical compressor records (speed 612 rev/min)
(all schemes with same number of meshes)
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numerical schemes. In this case the number of meshes for each pipe had to be
increased for the method of characteristics thereby not only increasing the
computation time but also the computer storage requirements. This is clearly
shown in Table 2 where for the same number of meshes in a system calculation
the results were poor for the method of characteristics when compared with the
other two second order schemes as shown by Figure 6.

CONCLUSION

The MacCormack finite difference procedure and the non-centred finite
difference boundary approach when incorporated in the existing compressor
simulation program and the unsteady gas flow which occurs in compressor
systems, the equations are solved efficiently which is in close agreement with the
Leapfrog method. '

NOTATION

B - Vector of terms relating to heat transfer area change and friction.
C - The Jacobian of G ( = constant matrix)
G - Vector function of U

t - time

U - Vector dependent variables

X - Distance

A - Wavelength

€ - Amplification factor

Subscripts

J - Space level

N - Boundary

* - Artificial boundary point

Superscripts

n - Time level
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